Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Polynomials with Completely Prescribed Eigenstructure

We present necessary and sufficient conditions for the existence of a matrix polynomial when its degree, its finite and infinite elementary divisors, and its left and right minimal indices are prescribed. These conditions hold for arbitrary infinite fields and are determined mainly by the “index sum theorem”, which is a fundamental relationship between the rank, the degree, the sum of all parti...

متن کامل

On Inverse Quadratic Eigenvalue Problems with Partially Prescribed Eigenstructure

The inverse eigenvalue problem of constructing real and symmetric square matrices M , C, and K of size n × n for the quadratic pencil Q(λ) = λ2M + λC + K so that Q(λ) has a prescribed subset of eigenvalues and eigenvectors is considered. This paper consists of two parts addressing two related but different problems. The first part deals with the inverse problem where M and K are required to be ...

متن کامل

Structured eigenvalue condition numbers and linearizations for matrix polynomials

This work is concerned with eigenvalue problems for structured matrix polynomials, including complex symmetric, Hermitian, even, odd, palindromic, and anti-palindromic matrix polynomials. Most numerical approaches to solving such eigenvalue problems proceed by linearizing the matrix polynomial into a matrix pencil of larger size. Recently, linearizations have been classified for which the penci...

متن کامل

The distance from a matrix polynomial to matrix polynomials with a prescribed multiple eigenvalue

For a matrix polynomial P (λ) and a given complex number μ, we introduce a (spectral norm) distance from P (λ) to the matrix polynomials that have μ as an eigenvalue of geometric multiplicity at least κ, and a distance from P (λ) to the matrix polynomials that have μ as a multiple eigenvalue. Then we compute the first distance and obtain bounds for the second one, constructing associated pertur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational & Applied Mathematics

سال: 2005

ISSN: 0101-8205

DOI: 10.1590/s0101-82052005000300003